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The method of the most probable path of evolution is applied to de-
termine the stochastic matrix of transition probabilities under quasi-
equilibrium conditions, as well as under conditions far removed from
equilibrium.

The method of the most probable path of evolution
describes nonequilibrium steady systems by means
of stochastic models of discrete-time Markov proces-

ses. The essence of the method involves the following.

1. If the system is not in equilibrium and a steady
flow has been established, the properties of the sys-
tem are defined not only by the distribution function
{pi}, but by the conditional probabilities {pj;} of tran-
sition per unit time between the states.

2. The principal postulate of the thermokinetics of
irreversible processes, generalizing the second law
of thermodynamics, must necessarily contain the al-
gorithm defining the transition probabilities on the
basig of the information known about the system.

3. Based on considerations whose detailed cover-
age will be given separately, we derived the follow-
ing formulation of the principal postulate: the stochas-
tic matrix {p;;} of the conditional transition probabili-
ties, satisfying all of the macroscopic conditions
imposed on the system, in the steady state causes the
entropy of evolution to pass to the maximum through
the step

H=—Xppi;logp,;. (1)
i
Hence it follows that the elements of the stochastic
matrix can be determined by solving a variational

equation of the form

13 \
6( H+EXiFi =0,
i !

where k of the equation Fj = 0, {i = 1...k) represents
macroscopic conditions imposed on the system and

Xj are the Lagrange multipliers introduced to take
this information into consideration in the variation.
The proposed postulate actually satisfies the principle
of correspondence in the sense of degeneration to
the second law of thermodynamics on transition to the
equilibrium conditions.

Here we will consider solutions of the above-cited
variational equation for a system with a steady flow of
heat; separate consideration is given to the case of a
small flow of heat, when the nonequilibrium system is
close to the equilibrium position. This case has been
well developed by the method of the thermodynamics
of the quasi-equilibrium state [1], involving the use of
linear phenomenological relationships between thermo-

dynamic flows and forces. Within the framework of the
present model, this last concept iseasily generalized

to the case of arbitrary deviations from the equilibrium

state.

The entropy of evolution for a system with heat flow.
Let the states of the system be the energy levels g4,
€, ...,&N. Then p;is the probability of having energy
€i, pjjis the probability of changing the energy &j to
&5 during the interval time 7. We will assume that the
transitions between the levels occur under the influ-
ence of two factors (thermostats), with only one of
these acting in each step, so that it is possible to trace
the average transfer of energy from one thermostat to
another and to use the result of this experiment in the
form of a condition imposed on the system.

Let ajj and byj denote the conditional probabilities
of transition from level i to level j under the influence
of the first and second factors, respectively. Here

@+ by =py ().
The probability of the sequence of states iy, iy, i, ...,
ig, where the transition iy = i;is due to thefirst fac-
tor, the transition i;— i, is due to the second factor,
the transition ig—; — ig is equal to the first, etc., is
equal to

Pio Qiyiy biyis -« Gigrigs

and since the number of transitions with probability
unity in sufficiently long sequences of states is pro-
portional to the probability of these transitions, the
probability of a sufficiently long sequence of states,
according to the considerations covered in [2], is
equal to exp(—sH,), where s is the number of steps in
the sequence, and H,is the entropy of the chain per
interval,

Hy = —E pia;;loga;; — E P;

Qv i)

b”' Iogb,! -—

- ,
- ZP[PH log p; pu=1 ‘E P (2)
2

i
The mean energy of this system is equal to
<E>=Eﬁipi- (3)

Let us determine the mean flow of heat for the in-
terval (the mean energy taken l;y the system from the
first thermostat during the time of a single interval)
according to the expression

(Q)y = EEpia,-j(s,-—sj). (4)
7

i
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Of course, since the mean energy of the system re-
mains constant, on the average as much heat is given
off by the system to the second thermostat, i.e., in
addition to (4)

<Q>:~?S‘ptb”(e —e).

At first glance, in the absence of an energy flux (in
this case ajj = bjj = pjj/2, since the thermostats are
identical) expression (2) mustchange into (1); however,
substituting the indicated values of ajj and bjj into (2),
we obtain

= —E}: pipijlog pi; - (log2) ( ! ——Epipii) )
[ i

so that H; = H. This is explained by the fact that in-
stead of all of the trajectories of length s whose num-
ber is equal to N® = exp(slogN), we need consider
only the class of the "most probable" trajectories
whose number for a sufficiently large s is equal to
exp (sH;), while the probability of each of the trajecto-
ries from this class is equal to exp (-sH;). For a non-
zero energy flux the trajectories of the system in the
space of the states differ not only interms of the orig-
inal and final position of the system in this givenstep,
but also in terms of the factor {first or second) respon-
sible for this transition. In the absence of flow both
factors must be regarded as fundamentally indistin-
guishable in view of the identity of the thermostats.
Certain groups of trajectories in this case cease to be
different and are thus reduced to a single trajectory.

If the trajectories of a system associated with two
external factors are sufficiently long (for a length s
the number of trajectories is exp(sH,)) with a reduction
in the flow they will group into exp“s ws:p[p”\) ]ogQ]
trajectories, so that within their limits there will re-
main only exp[sths( og2)( I — VP P“” and this

number is, of course, equal to exp (sH).

The cited considerations demonstrate that with an
energy flux different from zero and brought about by
two distinct external factors, the entropy of the evo-
lution for the interval reduces to the form

H=~E pa;loga;; — ‘_!Splb log b,

i#f 1 i+

-E pipu-logpi,-—(logZ)(\ 1= PP

i i

The probability of transition in linear approxima-
tion. We can now employ the principal postulate and
determine the probability of transition, with consider-
ation of additional conditions. Let us write the rela-
tionships to which the variables are subject:

1. By definition a,, 4 b, =p;; i+].

2. The standardization of the probabilities

=1, (5)
EPN= L. (6)

327

3. The condition for the steadiness of motion in the
system

pi= S Pibss (7)
i

4. The results of experiments (3) and (4).
Let us rewrite the expression for the entropy in the
form

H = __2 Epi la;loga;; + (p;;—a;)

ixj

X 10g pu i

Zpl pnlog(

Since the probabilities aij pertain only to condition (4),
we canmaximize Hrelative to aj; for fixedvalues of pij.
Denoting the Lagrange multiplier by u, we will seek the
maximum with the parameters ajj:

) log 2.

(H+nQ) =0,

8%
which leads to the equation
—pplog ay, — pr + p log (py, —a,) +

+ Pt By (e —e) =0,

whence

Pri .
1+ exp[—ule, —eg)l

ak1 =

Using the derived expression, we make the transform-
ation

H=—pQ— Y X pipyx
i

pA.
x log [ i ] —log 2,
1+ exp [—p(e;—e))l

Q= 2 zpzp” = . (8)

Fexp[—ple; —e))

Maximizing expression (8) for the entropy of evo-
lution relative to the transition probabilities pjj for
conditions (3), (5), (6), and (7) leads to rather cum-
bersome expressions and it is therefore tentatively
reasonable to limit ourselves to the case of a small
flow of energy. Since when Q =0 the factor u vanishes,
for small Q the factor u is also small. Let us use the
expansioninthis parameter of smallness exp [—pleq —
—ej)l =1 - ulei — &) In this approximation

H= ——;J,Q——E 2 pip;;log pyj,
i

i

1
Q=zuv Y‘, pip.; (e — &)
i

i.e., the entropy of evolution differs from the equilib-
rium entropy only by the magnitude uQ of the second
order of smallness, while the flow of heat is associ-
ated with its Lagrange factor u by a linear relation-
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ship. The maximization is now accomplished easily,
and specifically leads to the relationship

exp (—e,/kT)

Pij=p; = 7

where T is the temperature of the system and Z is its
(equilibrium) statistical sum. Thus, the formulated
problem has been completely solved: the transition
probabilities have been expressed interms of the three
parameters, Z, T, and p, ensuring satisfaction of Eqgs.
(3), (4), and (5). The conditional probabilities of tran-
sition in the subject quasi-equilibrium case of a small
flow of heat have the form

if YA

— e kT
b,izfi(zzeffk—’—[ 1——%—(8[——8,-)].

a.z_em:ﬂ@[w_g(ai‘_sﬂ],

For the heat flow we obtain the final expression
2
Q= —;-[Zp,s':?— (Zeip,-) } =L wrc,

where Cy denotes the heat capacity of the system at
constant volume.

The general case. With an arbitrary deviation from
the equilibrium state, the procedure for the determi-
nation of the transition probabilities reduces to a
variation of the entropy of evolution, taken in the form
of (8), or using the denotation

d,; = 1 +exp [—;M (&1 —g))l ©)

in the form

H-‘——HQ—Z Xp‘.p”-log (_EP,_,_) (10)
i I

if
for the additional conditions: a) 2 pi=1 ) 2 p;e; =
i i
=E, WY, p=L8 Yppy=0p
i i

The condition by means of which we take into con-
sideration the information known about the heat flow Q
had been used in an earlier stage of variation with
respect to aij and has been included in the definition of
the entropy of evolution in the form of the term uQ.

The first stage of the variation of H is carried out
for fixed p; for the variables pj; for the conditions &)
and 6) which were taken into consideration by the La-
grange multipliers o;pj and 6j:

aa (H+ Z Q;p; 2 pii + Z §; E pipil') =0,
Pri i ] 7 i

whence

Pt
— p, log
* dkl

—Py+p, +8p, =0
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or

Pu=dyexp[— 1 +a, + 8], (11)

where oy and §; are defined from conditions «) and
d).
Intheplaceof akand ¢; let us introduce the parame-~
ters £, and Xj, i.e., instead of (11) let
Pt = ey &4

while the unknown parameters £ and X; are defined
by the relationships replacing o) and 6):

-
2 de Bt =1 }_, Pile: EpXe = Py
7 %

These can be symmetrized by introducing ¢y = pk k-
Then

Pe Z Ay X = P (12)
T
-

Y ): Aoy ¢, = p,. (13)

In new denotations

PiPrr = Gy @k (14)

and substitution into (10) yields

H=—0—=Y Yo, 10g—~q);x’ =—pQ—
] :

— Z p; ( log —:—j—);p,—,‘—‘x {log ;) Z;Ptpu‘ =

i

=——pQ~Zpi log Piki (15)

i

The factor di; determines the existence of a de-
tailed balance.
Let us examine the expressions following from def-
inition (14):
PP = iy koo
PPk = dyy Ok

If dg = dj, which is the case, according to (9), only
when u = 0, Egs. (12) and (13) transform to

—
(Pk?:dkzxz =Pp Ky ;dm @, = szqu’z = Pr
i

from the obvious conclusion that in view of symmetry
9k = Xkg- Thus we immediately have satisfaction of
the detailed balance

PP = iy @y = Ay @1 = Ptk

The second stage of variation is carried out with
respect to p; with consideration of conditions §) and
v). The condition of the maximum

a’a)k [ H4+(x+1) iEPi‘H‘Z &P ] =0

yields the relationship
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Pyt P, 0% P, 6q>-)
) LL S L
Pe §; X; Ope e P; Ops *

+v+2+8e,=0. {18)

To calculate the sum contained here we will use
(12) and (13) which, after differentiation, yield

deg; a%;
0Pk - ;;){/ P - ij apk ik

o Zd,t @+ % \‘d 6“" = 8
C}Pk

,

Using (12} and (13) repeatedly, we obtain the value

y(ﬁf Ok | b 6_@).3

% dp, 9, 0P,

o ax% dg;
=2 ZV(% ,iaELeridjig._.z):

T % Pk .

d ~
= e \ d!..(p;wx.?.
ooy 23 28

Thus from {16) we have the following final form of the
state and transition probabilities:
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Pr = Q¥ €Xp (— ¥ —Bey)

X,
ML exp (v + Bey), (17
k

Pry =

where ¢ and x; should be sought from the simulta-
neous solution of the system of equations (12}, (13},
@), B), which is possible only for specifically given
energy spectra.

Substitution of distribution (17) into expression (15)
for the entropy of evolution yields the final expression
of the latter in terms of the macroscopic parameters

H=—uQ—BE—y.

The contribution to the entropy of evolution by the
thermokinetic term uQ here may be arbitrarily large
in comparison with the "thermostatic residue, " rep-
resenting the thermokinetic analog of conventional
entropy.
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